Detection and Analysis of Near-Earth Object Encounters

Steven Chesley

NASA NEO Program Office

JPL/Caltech

Minor Planet Amateur/Professional Workshop

Tucson, AZ

May 4, 2001

Outline

Encounter Detection

- Why we do it...
- How we do it...
 - Target plane methods
 - Linear encounter analysis
 - Nonlinear approaches
 - Pathological Cases
- Automatic systems

MPAPW 2001 Tucson, AZ

Why Bother?

Early discovery of threatening objects, coupled with early detection of potentially dangerous encounters is the key to mitigating a collision.

- Object detection does not imply collision warning.
- Monitoring along only the nominal trajectory is inadequate
- Warning time is crucial to mitigation effectiveness.

Historical Background

- Pre-1990's: Öpik theory, linear theory, Monte Carlo as an abstract concept.
- Shoemaker–Levy 9 (1994): Linear theory utilized and Monte Carlo approach successfully tested.
- 1997 XF₁₁ (March 1998): Linear theory sufficient to exclude 2028 impact, return problem proposed to deal with later encounters.
- 1999 AN₁₀ (March 1999): New theory based on understanding of resonant and nonresonant returns, experiments with new sampling methods. First potential impact using all data available, discovered and verified.
- 1998 OX₄ (June 1999): First lost potential impactor.
- Automatic Monitoring: Prototype running at Univ. of Pisa for 1 year has detected numerous potential impactors, but completeness unknown. More advanced systems presently under development at JPL and Pisa.

Target Plane Analysis

- **b** plane (Öpik plane)
 - Orthogonal to incoming asymptote.
 - Preferred for low velocity encounters.
 - Hides gravitational focusing.
- Impact plane (Modified TP)
 - Orthogonal to geocentric velocity at perigee.
 - Only option for temporary capture encounters.

MPAPW 2001 Tucson, AZ

Target Plane Coordinates

- The coordinates on the target plane are arbitrary, but it is revealing to align with the heliocentric velocity of the Earth.
- Then we have the MOID, and the time error as the coordinates.
- MOID (Minimum Orbital Intersection Distance) is the minimum distance between the two orbital ellipses.

Linear Encounter Analysis

- 1) Start with orbital uncertainty at epoch of observations (6- D ellipsoid).
- 2) Propagate trajectory with variational equations to the target plane.
- 3) Map uncertainty onto target plane (2- D ellipse).
- 4) Compute impact probability by integrating the intersection of the Earth and the PD on TP.
- → Nominal trajectory must pass close to Earth, and uncertainty on TP must be small enough.

Element Space

Target Plane

MPAPW 2001 Tucson, AZ

Limitations of Linear Approach

- The linear approach is "generally" adequate for...
 - Very near-term encounters with weak orbit determination.
 - Far-future encounters with well-determined orbits (if the trajectory is smooth enough).
- The linear analysis will be unreliable when...
 - There is a long propagation to the encounter. Nonlinearity induced from intervening encounters (and from Keplerian motion) can produce crazy results.
 - Orbit determination is poorly constrained: Initial ellipse becomes a "banananoid" when any axis grows very long.

1998 OX₄ Banananoid

MPAPW 2001 Tucson, AZ

Line of Variations Sampling

- LOV sampling or "Multiple Solutions Method"
 - Sample the backbone of the ellipsoid by "following the river."
 - Provides 1–D sampling space, but information about the width of uncertainty is lost.
 - Simplifies TP analysis because different dynamical routes to the encounter are easy to distinguish.

Monte Carlo Methods

- Careful sampling of the elements at epoch is necessary if the linear approach is inadequate. Two Monte Carlo methods are available:
 - 1) Sampling in element space.
 - Assumes linearity (ellipsoid) in the orbit determination, but fully accounts for nonlinearity in propagation.
 - Sufficient unless orbit is very poor.
 - 2) Sampling in observation space
 - Fully models all nonlinearities, but differential corrections for every sample is less efficient.

1997 XF₁₁ Monte Carlo Study

1997 XF11

1998 Mar 30

- Monte Carlo propagation with 500 points based on "88-day arc."
- Linear ellipsoid in Cartesian space at epoch of observations is a few Earth diameters in length.
- Ellipsoid is disrupted by encounter in 2028, leading to collision in 2040.

Chodas/JPL/Caltech

Chodas/JPL/Caltech

Resonant Returns

MPAPW 2001 Tucson, AZ

Problem Cases

Non-resonant returns

MPAPW 2001 Tucson, AZ

Complex Target Plane Analysis

- Consider a "Virtual Shower" from 1998 OX4 as an example.
- 20 LOV points intersect the TP within 0.1 AU in Jan. 2046:
 - 2 ordinary returns
 - 1 interrupted return
 - 1 singleton
 - 1 sparse collision return

Automatic Monitoring Systems

- Discovery of first lost potential impactor led to recognition of need for continuous monitoring (1998 OX4).
- Monitoring requires a hierarchy of automation:
 - 1) Observation files (updated several times daily)
 - 2) Orbit Determination (when observations changes)
 - 3) Linear Search (as far into future as feasible)
 - 4) Nonlinear Search (as necessary, based on queuing system)

Redundant Systems

- Two independent and redundant systems are desired to maximize completeness and confidence.
- CLOMON (University of Pisa)
 - Detected dozens of "Virtual Impactors" in first year of operation.
 - Based on Impact Plane analysis along LOV (plus Newton's method).
 - "Mostly" complete for impacts with IP>10⁻⁶.
 - System has led to improved understanding of pathological cases.
 - Several important improvements are in progress or planned.
- Sentry (Jet Propulsion Laboratory)
 - Based on b-plane analysis with hybrid LOV/Monte Carlo approach.
 - Presently under development and testing. Should be fully operational by fall 2001.

MPAPW 2001 Tucson, AZ